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An annual time series of weekly 
size-resolved aerosol properties 
in the megacity of Metro Manila, 
Philippines
Connor Stahl   1, Melliza Templonuevo Cruz   2,3, Paola Angela Bañaga2,4, Grace Betito   2,4,  
Rachel A. Braun   1, Mojtaba Azadi Aghdam1, Maria Obiminda Cambaliza2,4, 
Genevieve Rose Lorenzo2,5, Alexander B. MacDonald1, Preciosa Corazon Pabroa6, 
John Robin Yee6, James Bernard Simpas2,4 & Armin Sorooshian   1,5 ✉

Size-resolved aerosol samples were collected in Metro Manila between July 2018 and October 2019. 
Two Micro-Orifice Uniform Deposit Impactors (MOUDI) were deployed at Manila Observatory in Quezon 
City, Metro Manila with samples collected on a weekly basis for water-soluble speciation and mass 
quantification. Additional sets were collected for gravimetric and black carbon analysis, including 
during special events such as holidays. The unique aspect of the presented data is a year-long record 
with weekly frequency of size-resolved aerosol composition in a highly populated megacity where there 
is a lack of measurements. The data are suitable for research to understand the sources, evolution, 
and fate of atmospheric aerosols, as well as studies focusing on phenomena such as aerosol-cloud-
precipitation-meteorology interactions, regional climate, boundary layer processes, and health effects. 
The dataset can be used to initialize, validate, and/or improve models and remote sensing algorithms.

Background & Summary
The composition and size distribution of ambient particulate matter (PM) influence how particles impact air 
quality and public health1, climate2, the hydrological cycle3, and geochemical cycling of nutrients and contami-
nants4. Depending on particle size and composition, an inhaled particle can deposit in the extrathoracic (head), 
tracheobronchial (TB), or pulmonary (PUL) regions, which can have serious implications for health5–8. Similarly, 
size and composition of particles impact their radiative properties, ability to act as cloud condensation nuclei 
(CCN), and also the ability to be transported between regions.

Since seasonal changes in meteorology, transport pathways, and emissions can impact a given region, annual 
PM cycles are important to characterize. A summary of past long-term (> three-month period) size-resolved 
PM substrate-based sampling efforts are provided in Online-only Table 1. There are a scarcity of annual time 
series data with at least weekly frequency regardless of global region. Most substrate-based sampling efforts for 
size-fractionated PM cover periods of one to three months with a sample collection duration between 24 to 
96 hours per set, which were not included in Online-only Table 1. Longer sampling periods for individual sets, 
reaching up to a week9,10, are required in regions with less pollution in order to achieve sufficiently high mass 
concentrations (i.e. above limits of detection) for targeted species. The difficulty in obtaining long-term records 
of size-resolved PM composition with high temporal frequency is largely due to the labor-intensive nature of such 
measurements, which include several pre-and post- sampling steps and subsequent chemical analyses.

The megacity of Metro Manila in the Philippines consists of 16 cities containing approximately 12.88 million 
people, with a collective population density of about 20,800 km−2 11,12. Quezon City, the location where sampling 
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took place, is one of the most populated cities in the region, with a population of about 2.94 million people and 
a population density of approximately 17,000 km−2 12, which is among the highest in the world. Metro Manila 
is an ideal location for examining locally produced urban anthropogenic PM often mixed with a host of other 
air masses of marine and continental origin that are transported over both short and long distances to Metro 
Manila13. One aspect that makes the PM in Metro Manila unique is that black carbon levels are among the highest 
in the world11,14,15. The elevated black carbon is mainly due to vehicular emissions, more specifically the jeepneys, 
large trucks, and outdated vehicles11. The Philippines serves as a representative southeastern Asian country in 
terms of high population density, rapid urbanization, outdated vehicle usage and technology, and more lenient 
air regulations11.

The goal of this work is to present a 16-month size-resolved PM dataset for Metro Manila, Philippines. The 
unique geographic position of Metro Manila coupled to the wide ranging meteorology and transport patterns 
makes this dataset highly valuable in terms of examining numerous topics related to PM physics and chemistry 
with general implications for other regions: (i) impacts of PM on regional climate, clouds, and monsoonal activ-
ity, (ii) PM removal via wet deposition, (iii) aqueous processing of PM, (iv) source apportionment, (v) effects on 
PM properties due to mixing of varying air masses, (vi) catalytic and destructive effects of metals on inorganic/
organic species, (vii) impacts of extreme events (e.g., biomass burning, dust storms, fireworks, typhoons) on 
regional PM, and (viii) public health implications.

Methods
Field study description.  The dataset presented is a 16-month, size-resolved, chemical characterization of 
PM as part of a pre-campaign initiative for the Cloud, Aerosol, and Monsoon Processes Philippines Experiment 
(CAMP2Ex) titled CAMP2Ex weatHEr and CompoSition Monitoring (CHECSM) study. The CHECSM campaign 
took place between July 2018 through October 2019, within which August through October 2019 coincides with 
the airborne component of CAMP2Ex.

Study site description.  The CHECSM study occurred at the Manila Observatory (MO; 14.64°N, 121.08°E) 
located at the Ateneo de Manila campus in Quezon City, Philippines. The site was segregated from surrounding 
urban areas, including a major roadway, by a grove of trees circling the campus. However, it was clearly impacted 
by local urban emissions and long-range transport based on results from the first six months of data collected16–18. 
Sampling took place on the 3rd floor of the MO office building, which was approximately 85 m above sea level. 
Figure 1 shows a timeline of sampling, which occurred in four identified seasons: the 2018 southwest monsoon/
wet season (18 June–4 October)19,20, a transitional period (5–25 October), the northeast monsoon/dry season (26 
October 2018–10 June 2019)21, and the 2019 southwest monsoon/wet season (11 June–7 October)22,23. The south-
west monsoon is characterized by relatively high temperatures, high humidity, frequent and heavy rainfall, and 
winds coming predominantly from the southwest. The northeast monsoon is characterized by moderate rainfall, 
low humidity, lower temperatures, and winds affecting the eastern side of the country. The characteristics of the 
monsoons listed above are general traits, but the major determining factor is rainfall. The measured temperature, 
humidity, and rainfall during sampling period collected at MO ranged from 25.4–30.2 and 24.2–30.9 °C, 59–94 
and 54–85%, and 0–78.4 and 0–32.6 mm for the southwest and northeast monsoons, respectively, with average 
values of 27.6 and 27.7 °C, 72 and 64%, and 18.8 and 2.1 mm. Although the focus of this data descriptor is the 
size-resolved PM composition dataset, additional instrumentation co-located at MO during CHECSM is sum-
marized in Table 1.

Instrument Parameters

Aerosol Robotic Network (AERONET) Aerosol optical depth (AOD), single-scatter albedo (SSA), absorption angstrom 
exponent (AAE), scattering angstrom exponent (SAE), and water vapor

Disdrometer Droplet size and vertical velocity

Arctic High Spectral Resolution Lidar (AHSRL) Backscatter coefficient, depolarization ratio, and backscatter ratio

DustTrak and (2) Tactical Air Samplers (TAS) Real-time and 24-hour total PM2.5 mass concentration with chemical speciation

Solar Spectral Flux Radiometer (SSFR) Shortwave and longwave radiance and irradiance

All-Sky Camera Hemispheric sky imaging

Particle Soot Absorption Photometer (PSAP) Black carbon absorption and concentration

Automated Weather Station (AWS) Temperature, relative humidity, wind speed, wind direction, solar radiation, 
pressure, and precipitation

Davis Rotation Uniform-Cut Monitor (DRUM) Size segregated elemental composition of PM

Electronic Beta Attenuation Monitor (e-BAM) Real-time PM2.5 mass concentration

Kipp and Zonen CMP22 Pyranometer Solar radiation (broadband irradiance)

Kipp and Zonen CGR4 Pyrgeometer Solar radiation (infrared irradiance)

SPN1 Shadow Pyranometer Solar radiation (shadow broadband irradiance)

SP1-F Narrowband Shadow Pyranometer Solar radiation (shadow narrowband irradiance)

Table 1.  List of instruments deployed at Manila Observatory (MO) before and during CAMP2 Ex and the 
associated measurement parameters.
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Instrument description.  Size-resolved PM was collected using a pair of Micro-Orifice Uniform Deposit 
Impactors II (MOUDI II 120 R, MSP Corporation, Marple et al.24) on Teflon substrate filters (PTFE membrane, 
2 μm pores, 46.2 mm diameter, Whatman). The MOUDI-II is a 10-stage impactor with aerodynamic cutpoint 
diameters (Dp) of 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, and 0.056 μm with a pre-impactor (> 18 μm) and 
an after-filter (< 0.056 μm). Refer to Table 2 for the associated stage numbers, collected diameter ranges, and 
cutpoint diameters. The instruments operated at a nominal flowrate of ~30 L min−1, with measured flowrates for 
each set reported in Table 3. Each stage, except for the pre-impactor and after-filter, continuously rotates to allow 
for uniform deposition of particles. Pressures for each stage were measured and recorded to ensure pressure drops 
were within acceptable ranges. An identical pair of MOUDIs were deployed for two reasons: (i) there would be no 
delay in sampling when a unit required maintenance, and (ii) simultaneous measurements allowed for additional 
analyses of collected PM.

MOUDI sets were collected weekly over a 48-hour period with the exception of sets MO1, MO2, MO3/4, 
MO5, MO31/32, and MO51, which were collected for 24, 54, 119, 42, 49, and 50 hours, respectively. MOUDI 
sets labeled MO#/# refer to the sets that were simultaneously collected so that both chemical analysis and 
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Fig. 1  Timeline of size-resolved aerosol measurements at the Manila Observatory. Light blue boxes represent 
the southwest monsoon/wet seasons, the light green box represents the transitional period, and the orange box 
represents the northeast monsoon/dry season. Dark colored boxes represent MOUDI sampling periods and 
black boxes represent parallel MOUDI sampling periods.
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gravimetric analysis could be performed. A total of 66 sets were collected; 11 of the sets were collected using the 
simultaneous sampling approach, 54 of the sets were analyzed using ion chromatography (IC; Thermo Scientific 
Dionex ICS-2100 system), 47 of the sets were also analyzed using triple quadrupole inductively coupled plasma 
mass spectrometry (ICP-QQQ; Agilent 8800 Series), and 1 set (MO25) was collected as a special microscopy 
set. Additional MOUDI sets were collected on aluminum substrates for microscopy analysis using a Scanning 
Electron Microscope (SEM); however, these sets are not included in the dataset presented here. For more infor-
mation on these sets, please refer to Cruz et al.16.

The MOUDIs were set up in such a way to reduce both particle losses and blockage of the inlet. The inlet tub-
ing connecting the MOUDI to ambient air was constructed of stainless steel. The tubing was bent meticulously 
with a large radius such that there were no kinks. The inlet of the tubing was oriented downwards to prevent water 
from entering the MOUDI. To further avoid debris from getting into the inlet, a funnel with a mesh covering 
was attached securely to the downward facing tube opening exposed to ambient air. The temperature differential 
between the outside air and the tubing was either negligible or the tubing was slightly warmer than the outside 
air, thus reducing the possibility of thermal deposition. As the average relative humidity measured onsite over the 
sampling period was approximately 68% ranging from 54–94% throughout the year, the diameters of sampled 
particles correspond to wet rather than dry diameters and particle bounce was not significant25. This is addition-
ally supported by particle morphology characterization showing evidence of halo areas, indicative of the particles 
being saturated when impacting onto the substrates26–28, surrounding particles in both the fine and coarse size 
ranges16,17.

Pre-Sampling processing.  The Teflon substrates were prepared prior to use by soaking each substrate face 
for a minimum of 12 hours in ~7.6 cm of Milli-Q (18.2 MΩ-cm) water in a laminar flow hood and/or covered 
container. Once each substrate face was soaked, the substrates were removed and placed in methanol cleaned 
Petrislides (Millipore), which were left slightly open in a laminar flow hood to dry any water residue. Once the 
substrates were dry, the Petrislides were closed and sealed using Parafilm to ensure the substrates were devoid of 
any particles or gases that could deposit on them.

Post-Sampling processing.  Figure 2 summarizes the post-sampling process to reach the final dataset. After 
sampling was completed, substrates were first cut in half using ceramic scissors so one-half could be used for 
extraction in Milli-Q water and the other half could be stored in a freezer at −20 °C for future analyses. Ceramic 
scissors that were cleaned with methanol were used to cut the substrates in half in order to prevent contami-
nation of heavy metals from other cutting instruments (e.g. metal scissors). The ceramic scissors were subse-
quently cleaned with methanol after each cut. Substrate extractions were performed using 8 mL of Milli-Q water 
(18.2 MΩ-cm) in cleaned 15 mL polypropylene centrifuge tubes that were sonicated for 30 minutes at 25–30 °C. 
Samples were extracted in this temperature range to ensure all targeted organics would solubilize. Additionally, 
during sampling, temperatures ranged from 28.7–45.7 °C; therefore, any volatile species were expected to be 
gone prior to the point of sampling and well before extractions took place. There have been other papers that 
performed similar extractions with temperatures up to 60 °C29–33. Sonicated solutions were then decanted into 
two different containers for analysis: (i) 0.5 mL polypropylene vial with a filter cap for analysis via IC, and (ii) 
a polypropylene centrifuge tube for analysis via ICP-QQQ. The remainder of the solutions were then stored 
in a refrigerator at 0 °C. Blank substrates were also processed in a similar manner to serve as background con-
trol samples. The motivation behind using water for extractions was owing to the importance of the results for 
health effects and toxicological studies, radiative effects, atmospheric residence time, nucleation efficiency, and 
bioavailability34–39.

Ions.  Cationic and anionic water-soluble PM speciation and quantification was conducted using a 2 mm IC 
system at a flowrate of 0.4 mL min−1. The cationic species measured were Na+, NH4

+, Mg2+, Ca2+, dimethylamine 
(DMA), trimethylamine (TMA), and diethylamine (DEA) using an eluent of methanesulfonic acid. The anionic 
species measured were methanesulfonate (MSA), pyruvate, adipate, succinate, maleate, oxalate, phthalate, Cl−, 

Stage # Diameter Range (μm) Cutpoint Diameter (μm)

1 > 18 18

2 18–10 10

3 10−5.6 5.6

4 5.6–3.2 3.2

5 3.2–1.8 1.8

6 1.8–1.0 1.0

7 1.0–0.56 0.56

8 0.56–0.32 0.32

9 0.32–0.18 0.18

10 0.18–0.10 0.10

11 0.10–0.056 0.056

12 < 0.056 < 0.056

Table 2.  List of the stages and the respective collected diameter range and cutpoint diameters.
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Sample ID
Avg. Flow 
(L/min)

Run Time 
(hr)

Avg. Temp. 
(°C)

Avg. RH 
(%)

Days of 
the Week Sample ID

Avg. Flow 
(L/min)

Run Time 
(hr)

Avg. Temp. 
(°C)

Avg. RH 
(%)

Days of 
the Week

MO1 29.6 24 30.5 59.0 Th-F MO34 29.4 48 35.3 57.9 M-W

MO2 29.6 54 31.7 66.8 M-W MO35 (G) 25.6 48 36.6 56.8 T-Th

MO3 (G) 28.6 119 34.9 69.0 W-M MO36 29.3 48 39.9 56.8 T-Th

MO4 30.3 119 34.4 69.0 W-M MO37 30.0 48 38.8 55.1 W-F

MO5 28.8 42 33.5 66.7 M-W MO38 29.6 48 36.4 54.0 S-M

MO6 27.1 48 34.6 63.3 M-W MO39 (G) 26.4 48 39.0 57.6 M-W

MO7 27.9 48 34.9 78.3 T-Th MO40 29.6 48 41.4 57.6 M-W

MO8 29.0 48 35.7 78.2 W-F MO41 29.1 48 38.7 57.7 T-Th

MO9 27.5 48 34.9 68.4 S-M MO42 29.1 48 40.3 53.7 W-F

MO10 29.0 48 36.7 65.2 M-W MO43 (G) 26.8 48 36.1 59.8 S-M

MO11 27.1 48 35.8 68.3 T-Th MO44 28.6 48 37.0 59.8 S-M

MO12 27.5 48 37.0 70.9 W-F MO45 28.7 48 37.3 61.8 M-W

MO13 (G) 29.8 48 35.1 73.1 S-M MO46 28.7 48 39.0 72.2 T-Th

MO14 26.1 48 32.0 73.1 S-M MO47 28.9 48 39.3 64.5 W-F

MO15 29.7 48 37.3 67.6 M-W MO48 28.0 48 38.9 62.6 S-M

MO16 29.2 48 37.6 67.7 T-Th MO49 (G) 25.5 48 38.1 62.6 S-M

MO17 30.0 48 36.5 60.6 W-F MO50 28.8 48 39.2 64.4 M-W

MO18 29.5 48 36.7 61.9 S-M MO51 27.8 50 36.2 77.1 T-Th

MO19 31.4 48 35.8 61.4 M-W MO52 (G) 24.9 48 36.6 60.9 W-F

MO20 30.2 48 34.8 60.8 T-Th MO53 26.9 48 38.8 60.9 W-F

MO21 30.5 48 34.8 72.0 W-F MO54 28.8 48 36.8 66.4 S-M

MO22 29.6 48 32.7 78.5 S-M MO55 28.8 48 38.0 75.4 M-W

MO23 26.4 48 29.7 81.8 M-W MO56 26.7 48 35.0 76.1 T-Th

MO24 30.2 48 35.8 84.6 M-W MO57 27.5 48 33.0 94.1 W-F

MO25 (AL) N/A 2.75 N/A N/A M-T MO58 (G) 24.5 48 33.4 94.1 W-F

MO26 24.1 48 35.0 77.2 T-Th MO59 28.2 48 37.8 85.9 S-M

MO27 23.9 48 36.2 65.3 W-F MO60 28.2 48 37.3 92.7 M-W

MO28 25.0 48 33.1 63.5 S-M MO61 29.4 48 36.3 62.1 T-Th

MO29 29.5 48 34.5 63.3 M-W MO62 27.8 48 36.5 77.0 W-F

MO30 29.8 48 34.4 60.7 T-Th MO63 (G) 24.4 48 35.0 77.0 W-F

MO31 29.9 49 35.8 65.7 W-F MO64 27.0 48 37.5 67.2 S-M

MO32 (G) 24.4 49 37.0 65.7 W-F MO65 27.2 48 38.4 65.3 M-W

MO33 29.8 48 34.3 58.1 S-M MO66 (G) 23.9 48 37.7 57.9 M-W

Table 3.  MOUDI sample set operating data. The table includes average flowrates, total sample run time, average 
operating temperature of the MOUDI cabinet, relative humidity (RH), and the days of the week sampling 
occurred. The start/end times varied between 13:00 and 15:00 local time for standard sets and 5:00 local time for 
dual gravimetric/IC sets. Sets with a label of (G) are gravimetric sets and the set labeled (AL) was collected for 
SEM analysis. All other sets were only measured with IC and/or ICP-QQQ.

Fig. 2  Flow chart of steps leading from MOUDI substrate collection to compilation of final data. The more 
commonly used single MOUDI sampling strategy follows only the top branch after “MOUDI” while the less 
frequent dual MOUDI sampling approach encompasses both the top and bottom branches. Rounded boxes 
represent instrument and analytical analyses steps while the standard boxes represent other processing steps.
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NO3
−, and SO4

2− using an eluent of potassium hydroxide (KOH). A 30-minute instrument method was used 
for both anion and cation columns with a 5-minute equilibration period giving a total of 35 minutes per sample. 
The columns used were the Dionex IonPac AS11-HC 250 mm and CS12A 250 mm models for anion and cation 
analysis, respectively. The suppressors used were a Dionex AERS 500e and a CERS 500e for anions and cations, 
respectively. For anions, the eluent started at 2 mM, ramped up to 8 mM from 0 to 20 minutes, and then ramped 
up from 8 to 28 mM from 20 to 30 minutes using a suppressor current of 28 mA. For cations, the eluent started 
at 5 mM, was isocratic from 0 to 13 minutes, ramped up from 5 to 18 mM from 13 to 16 minutes, and finally was 
isocratic at 18 mM from 16 to 30 minutes using a suppressor current of 22 mA. The recoveries, limits of detection 
(LOD), and limits of quantification (LOQ) for these species can be found in Table 4.

Elements.  Water-soluble elements were speciated and quantified using ICP-QQQ after being acidified in 2% 
nitric acid. The elements quantified were: Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Hf, K, Mn, Mo, Nb, Ni, Pb, Rb, Se, 
Sn, Sr, Ti, Tl, V, Y, Zn, and Zr. The recoveries, LOD, and LOQ for these species can be found in Table 5. For species 
that were measured by both IC and ICP-QQQ (Na, Mg, K, and Ca), duplications were not included in the dataset. 
IC measurements are provided for Na, Mg, and Ca, while ICP-QQQ measurements for K are provided due to 
potential contamination from the eluent (i.e., KOH) used in the IC. The exception to this is for sets MO57-MO65 
where K from the IC was used due to lack of ICP-QQQ data.

Gravimetric.  Gravimetric analysis was performed using a Sartorius ME5-F microbalance with a sensitiv-
ity of ±1 μg. The microbalance was located in a temperature and humidity-controlled room at 20–23 °C and 
30–40% relative humidity with an airlock buffer. Clean substrates were weighed prior to sample collection and 
then weighed again after sampling ended. Before weighing took place, the filters were equilibrated in the room 
for at least 24 hours. After the equilibration time, each substrate was passed near a 210Po antistatic tip for 30 sec-
onds to minimize measurement bias due to electrostatic charge at the surface of the substrate. Each substrate 
was weighed twice, once initially and then again 24 hours later. If the difference between these two weighings 
exceeded 10 μg, the substrate was weighed again 24 hours later and this process was repeated until the difference 
between weighings was less than 10 μg. The percent standard deviations for the weighings before and after sam-
pling, respectively, were relatively negligible, with the highest being 0.005%. The PM mass was derived from the 
difference of the average substrate weight after sampling minus the average substrate weight before sampling. The 
standard deviation of the change in weight was then calculated for each PM substrate using the following error 
propagation equation:

= +SD SD SD (1)d b a
2 2

where SDd is the standard deviation of the difference, SDb is the standard deviation of the substrate before sam-
pling, and SDa is the standard deviation of the substrate after sampling. The percent standard deviation across all 
stages and sets averaged out to be approximately 7%.

Black carbon.  The subsequently weighed substrates were then analyzed using a Multi-wavelength Absorption 
Black Carbon Instrument (MABI; Australian Nuclear Science and Technology Organisation). The MABI is an 
optical instrument used to quantify the mass concentration of black carbon by detecting the absorption for seven 

Ion Recovery ± SD (%) LOD (ppb) LOQ (ppb) LOD (μg m−3) LOQ (μg m−3)

Adipate 101 ± 4 22.655 75.517 2.10E-03 6.99E-03

Ammonium 100 ± 17 42.434 141.447 3.93E-03 1.31E-02

Calcium 100 ± 5 45.229 150.763 4.19E-03 1.40E-02

Chloride 103 ± 7 2.144 7.147 1.99E-04 6.62E-04

DMA 100 ± 2 52.709 175.697 4.88E-03 1.63E-02

Magnesium 104 ± 8 36.925 123.083 3.42E-03 1.14E-02

Maleate 100 ± 3 6.970 23.233 6.45E-04 2.15E-03

MSA 102 ± 6 12.316 41.053 1.14E-03 3.80E-03

Nitrate 106 ± 12 8.917 29.723 8.26E-04 2.75E-03

Oxalate 100 ± 2 12.312 41.040 1.14E-03 3.80E-03

Phthalate 99 ± 2 20.685 68.950 1.92E-03 6.38E-03

Pyruvate 102 ± 6 63.754 212.513 5.90E-03 1.97E-02

Sodium 104 ± 8 43.476 144.920 4.03E-03 1.34E-02

Succinate 98 ± 9 11.046 36.820 1.02E-03 3.41E-03

Sulfate 101 ± 3 11.982 39.940 1.11E-03 3.70E-03

TMA & DEA 102 ± 4 315.164 1050.550 2.92E-02 9.73E-02

Table 4.  Water-soluble species analyzed with their respective recoveries ± standard deviations (SD), limits of 
detection (LOD), and limits of quantification (LOQ) in aqueous concentration units. Species were quantified 
using IC (ions). LODs and LOQs in ppb are aqueous concentrations while LODs and LOQs in μg m−3 are air 
equivalent concentrations.
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wavelengths (405, 465, 525, 639, 870, 940, and 1050 nm). The following equation was used to calculate black 
carbon concentration:

ε
=













−
−BC ng m A cm

m g V m
ln I

I( )
10 [ ( )]

[ ( )][ ( )] (2)
3

5 2

2 1 3
0

where ϵ is the mass absorption coefficient, A is the substrate collection area, V is the volume of air sampled, I0 
is the measured light transmission through the blank substrate, and I is the measured light transmitted through 
the sample substrate. The mass absorption coefficient was provided in the MABI manual, collection area was 
retrieved based on impaction rings on the substrates, volume was calculated from flowrate and sample time, and 
light transmission was produced directly from the MABI.

Data processing.  IC and ICP-QQQ areas were converted to concentrations using Excel sheets formatted to 
use calibration curves, unit operations, and sampling information. The concentration files were then organized 
using an assortment of MATLAB codes to produce the data into the published state with gravimetric and black 
carbon data. Excel and MATLAB processing files are available upon request.

Data Records
The dataset, located on figshare40, is in a specialized format used by the National Aeronautics and Space 
Administration (NASA) for field data, which is referred to as the ICARTT file format. The file name consists of 
the associated campaign, instrument used, sampling method, start date, revision number, and the end date. The 
format includes data notes in a README tab. These notes include the data principal investigator (PI), affiliated 
institution, mission name, the start date of data collection, the last data revision date, the number of variables, 
data flags, sampling platform and location, instrument information, brief description of the data, and revision log. 
The revision log states what revision the data is currently on and lists the previous revisions and their relative sta-
tus. Additional tabs include the MOUDI stage cutpoints and size ranges, uncertainties and LODs, and the variable 
list and units. Data include ions, elements, gravimetric weights, and MABI measurements separated by stages in 
air equivalent mass concentrations (µg m−3). Note that the reported data are in air equivalent concentrations and 
typically are converted to dC/dlog Dp to properly look at the size distributions.

Element Recovery ± SD (%) LOD (ppt) LOQ (ppt) LOD (μg m−3) LOQ (μg m−3)

Ag 100 ± 11 0.743 2.477 6.88E-08 2.29E-07

Al 96 ± 7 29.474 98.247 2.73E-06 9.10E-06

As 98 ± 10 7.945 26.483 7.36E-07 2.45E-06

Ba 97 ± 11 3.698 12.327 3.42E-07 1.14E-06

Cd 102 ± 11 4.194 13.980 3.88E-07 1.29E-06

Co 98 ± 8 0.722 2.407 6.69E-08 2.23E-07

Cr 97 ± 9 1.150 3.833 1.06E-07 3.55E-07

Cs — 0.733 2.443 6.79E-08 2.26E-07

Cu 99 ± 8 1.127 3.757 1.04E-07 3.48E-07

Fe 97 ± 9 1.191 3.970 1.10E-07 3.68E-07

Hf — 0.963 3.210 8.92E-08 2.97E-07

K 93 ± 18 10.480 34.933 9.70E-07 3.23E-06

Mn 97 ± 9 1.624 5.413 1.50E-07 5.01E-07

Mo 96 ± 11 2.258 7.527 2.09E-07 6.97E-07

Nb — 0.522 1.740 4.83E-08 1.61E-07

Ni 97 ± 8 2.837 9.457 2.63E-07 8.76E-07

Pb 99 ± 8 0.503 1.677 4.66E-08 1.55E-07

Rb — 1.566 5.220 1.45E-07 4.83E-07

Se 97 ± 10 82.393 274.643 7.63E-06 2.54E-05

Sn 97 ± 7 1.772 5.907 1.64E-07 5.47E-07

Sr 98 ± 9 1.102 3.673 1.02E-07 3.40E-07

Ti 101 ± 10 39.046 130.153 3.62E-06 1.21E-05

Tl 100 ± 8 0.383 1.277 3.55E-08 1.18E-07

V 95 ± 9 1.353 4.510 1.25E-07 4.18E-07

Y — 0.523 1.743 4.84E-08 1.61E-07

Zn 96 ± 8 5.880 19.600 5.44E-07 1.81E-06

Zr — 1.008 3.360 9.33E-08 3.11E-07

Table 5.  Same as Table 4 but species were quantified using ICP-QQQ (elements). Species marked with ‘—’ in 
their respective recovery and standard deviation columns were not measured for recovery purposes. LODs and 
LOQs in ppt are aqueous concentrations while LODs and LOQs in μg m−3 are air equivalent concentrations.
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Technical Validation
A number of experimental and data processing techniques were implemented to validate and better characterize 
the final data. The flowrate for each set was measured using a flowmeter (Mesa Labs Definer 220 series) three 
times both prior to and after each sampling period. The overall average of these values was used as the flowrate 
for each set. Additionally, pressures for each stage were measured at the beginning and end of sampling to ensure 
there was no significant change in the pressure drop. To keep the flowrate as close to 30 L min−1 as possible, the 
MOUDI nozzle plates were removed and cleaned regularly and especially if the flowrate dropped below 27 L 
min−1. The nozzle plates were cleaned by soaking the plates in either a methanol-water solution or in pure meth-
anol for 24 hours or more. They were then removed and rinsed with methanol, followed by placement in a clean 
area to let the methanol evaporate. However, towards the ending of the sampling campaign the flowrate dropped 
to about 24 L min−1 and subsequent cleanings did not alleviate the problem. The issue was likely due to one or 
both of the lower nozzle plates (0.056 and 0.1 μm cutpoint diameters) being heavily clogged with the black carbon 
rich air and unable to be cleared without a more aggressive cleaning method.

Chromatogram peaks were automatically drawn by the IC and ICP-QQQ system software. However, for the 
IC only, the operator would view each chromatogram to adjust peak areas and add in missing species. LOD and 
LOQ were calculated using 3 Sab−1 and 10 Sab−1 methods, respectively, where Sa is the standard deviation of the 
response and b is the slope of the calibration curve41. Recoveries were calculated by taking the ratio of the mass of 
a specific measured species to the known amount of that species in that sample42. Recoveries for IC and ICP-QQQ 
were all above 93% with repeatability ranging from 2% to 18% (Tables 4 and 5). During data analysis, dC/dlog Dp 
plots (stages 2–11) were examined to ensure a normal distribution was obtained. If the first (stage 2) or last stage 
(stage 11) was higher than the next (stage 3) or previous stage (stage 10), respectively, then that stage was not con-
sidered for a particular set and viewed as having unreliable data. If a species was not measured for a stage, a value 
of −9999 was inputted. Similarly, if a species was below the LOD for a stage, a value of −8888 was inputted. A 
summary of the relative number of data points either missing (i.e., no ICP-QQQ data for last seven sets) or below 
the LOD for a specific species and stage can be seen in Table 6.

A charge balance was also performed by converting each species to moles, multiplying by their respective 
charges, and then summing up all cations and all anions in a stage. It should be noted that only IC species, with 
the exception of K from ICP-QQQ, were used to measure the overall charge balances. The reasons for these are 
(i) the majority of the ICP-QQQ species are transition metals which have varying oxidation states and, without 
pH measurements, the proper charge cannot be assigned, and (ii) the majority of these species are very low in 
concentration and do not significantly affect the overall charge balances. All the stages were then plotted per set 
and a trend line was applied to test if there was a linear correlation. The charge balance R2 values in Table 7 reveal 
strong linear correlations (> 0.90), verifying that the data are valid. Additionally, Fig. 3 shows the overall charge 
balance for every set. All of the sets agree with the trend, with the exception of set 24, which can be seen deviating 
from the rest of the data. This set coincided with New Year’s fireworks, which produce a large amount of anionic 
species such as sulfate and nitrate as well as cationic metals, such as Fe and Cu. The combination of large anionic 
concentrations and the presence of cationic metals not included in the calculation lead to a charge balance slope 
below unity (i.e. more anions than cations).

Usage Notes
The data provided can be used to conduct various studies to improve understanding of regional PM effects 
and implications. The dataset can be synchronized up with the other CHECSM instruments set up by the Air 
Quality Dynamics-Instrumentation and Technology Development (AQD-ITD) laboratory, the AErosol RObotic 
NETwork (AERONET) station43, and meteorological and precipitation chemistry data collected by MO (Table 2).

There are a host of previous (7 SouthEast Asian Studies (7-SEAS) 2010–2018; Biomass-burning Aerosols 
& Stratocumulus Environment: Lifecycles and Interactions Experiment (BASELInE) 2013–2015) and ongoing 
(CAMP2Ex) research activities in southeast Asia from which this dataset can provide additional context. The 
dataset also has relevance for all global regions in that process-level understanding can be improved using a 
dataset with such a wide range of pollution scenarios in one of the most polluted cities of the world with diverse 
meteorological characteristics.

A few papers have been produced using portions of this dataset already. Cruz et al.16 looked at size-resolved 
PM composition during the 2018 southwest monsoon season and conducted positive matrix factorization (PMF) 
to identify PM sources, which were attributed to aged PM, sea salt, combustion emissions, vehicular/resuspended 
dust, and waste processing emissions. Braun et al.18 presented case examples of long-range transport of PM from 
east and southeast Asia, such as biomass burning from the Maritime Continent and transport from continental 
East Asia. They also presented examples of different transport pathways of pollution to the study site which 
yielded concentration differences for species such as K, Rb, Ba, V, Pb, Mo, and Sn. AzadiAghdam et al.17 analyzed 
sea salt PM in Metro Manila and found that sea salt concentrations varied during the wet season and appeared 
to be contaminated by crustal and anthropogenic sources. Building off these limited examples using just a subset 
of the overall dataset, there are a significant number of topics that this dataset can be used to address, such as the 
following:

•	 Impacts of PM on regional climate, clouds, and monsoon activity by (i) comparing PM composition to other 
cities around the world with and without monsoon seasons, (ii) combining the dataset with meteorological 
data from satellites and models to understand influences on aerosol composition via mechanisms such as 
photochemical processing, and (iii) relating surface PM concentrations to AOD from AERONET and satellite 
sensors to examine the vertical nature of aerosol in the region as has been done in other regions (e.g. ref. 44).
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•	 Removal of PM via wet deposition by looking at what species are most effectively scavenged using precipita-
tion data (e.g. refs. 45,46).

•	 Aqueous processing of PM by looking at the changes of PM concentrations in the dry vs the wet season and 
additionally as a function of cloud coverage and aerosol liquid water amounts (e.g. refs. 47,48).

•	 Source apportionment of PM by (i) observing seasonal changes in emissions (e.g. ref. 49) and (ii) comparing 
the emission sources determined by techniques such as PMF for the 2018 southwest monsoon season versus 
the 2019 southwest monsoon season.

•	 Effects associated with mixing of varying air masses (e.g. ref. 50) by identifying (i) what air masses influence the 
city and during what times of year, (ii) if synergistic effects of mixing air masses can be seen year round, and (iii) if 
satellites and models that speciate aerosol can capture the behavior of mixing air masses in the region as reflected 
in the MOUDI data.

Species Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10 Stage 11 Stage 12

Ag 7(39) 7(42) 7(31) 7(32) 7(30) 7(30) 7(30) 7(29) 7(27) 7(33) 7(40) 7(40)

Al 7(5) 7(5) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(1) 7(1) 7(23) 7(19)

As 7(41) 7(44) 7(39) 7(35) 7(34) 7(21) 7(4) 7(5) 7(5) 7(8) 7(37) 7(40)

Ba 7(5) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(16) 7(33) 7(26)

Cd 7(36) 7(41) 7(35) 7(30) 7(27) 7(6) 7(0) 7(0) 7(0) 7(8) 7(33) 7(37)

Co 7(24) 7(31) 7(18) 7(11) 7(7) 7(11) 7(12) 7(12) 7(11) 7(25) 7(40) 7(35)

Cr 7(27) 7(27) 7(14) 7(14) 7(14) 7(14) 7(6) 7(12) 7(14) 7(14) 7(16) 7(14)

Cs 7(47) 7(46) 7(37) 7(23) 7(23) 7(11) 7(3) 7(0) 7(0) 7(2) 7(41) 7(46)

Cu 7(28) 7(28) 7(8) 7(8) 7(7) 7(7) 7(3) 7(2) 7(7) 7(8) 7(14) 7(13)

Fe 7(18) 7(21) 7(12) 7(4) 7(2) 7(4) 7(1) 7(2) 7(10) 7(16) 7(25) 7(17)

Hf 7(45) 7(47) 7(41) 7(34) 7(31) 7(40) 7(37) 7(41) 7(44) 7(42) 7(47) 7(47)

K 0(14) 0(12) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(15) 0(15)

Mn 7(3) 7(1) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(15) 7(15)

Mo 7(37) 7(40) 7(23) 7(12) 7(8) 7(6) 7(4) 7(4) 7(4) 7(8) 7(34) 7(38)

Nb 7(43) 7(44) 7(35) 7(28) 7(23) 7(30) 7(17) 7(25) 7(34) 7(44) 7(47) 7(41)

Ni 7(26) 7(26) 7(3) 7(3) 7(1) 7(1) 7(0) 7(0) 7(0) 7(2) 7(10) 7(17)

Pb 7(25) 7(24) 7(3) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(13) 7(13)

Rb 7(10) 7(8) 7(2) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(8) 7(12)

Se 7(37) 7(43) 7(27) 7(25) 7(14) 7(13) 7(11) 7(11) 7(16) 7(24) 7(39) 7(39)

Sn 7(38) 7(40) 7(35) 7(22) 7(18) 7(8) 7(4) 7(0) 7(1) 7(5) 7(36) 7(36)

Sr 7(1) 7(1) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(7) 7(14) 7(23) 7(18)

Ti 7(12) 7(8) 7(0) 7(0) 7(0) 7(0) 7(2) 7(3) 7(2) 7(6) 7(24) 7(21)

Tl 15(35) 15(36) 15(34) 15(35) 15(34) 15(31) 15(20) 15(18) 15(21) 15(27) 15(34) 15(34)

V 7(41) 7(41) 7(33) 7(26) 7(23) 7(16) 7(4) 7(0) 7(1) 7(18) 7(40) 7(40)

Y 7(33) 7(35) 7(22) 7(15) 7(14) 7(22) 7(26) 7(32) 7(29) 7(33) 7(39) 7(40)

Zn 7(11) 7(13) 7(5) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(0) 7(12) 7(12)

Zr 7(31) 7(36) 7(14) 7(5) 7(1) 7(7) 7(9) 7(21) 7(36) 7(30) 7(42) 7(34)

Adipate 4(39) 4(42) 4(22) 4(30) 4(30) 4(30) 4(32) 4(29) 4(25) 4(20) 4(39) 4(37)

Ammonium 0(28) 0(37) 0(11) 0(8) 0(6) 0(2) 0(1) 0(0) 0(0) 0(0) 0(10) 0(8)

Calcium 0(15) 0(14) 0(2) 0(0) 0(0) 0(0) 0(1) 0(5) 0(8) 0(15) 0(41) 0(33)

Chloride 0(11) 0(8) 0(1) 0(0) 0(0) 0(0) 0(0) 0(2) 0(2) 0(7) 0(39) 0(30)

DMA 0(52) 0(53) 0(43) 0(47) 0(47) 0(39) 0(27) 0(25) 0(29) 0(41) 0(46) 0(44)

Magnesium 0(12) 0(9) 0(0) 0(0) 0(0) 0(0) 0(0) 0(1) 0(1) 0(12) 0(34) 0(34)

Maleate 0(54) 0(54) 0(53) 0(49) 0(51) 0(48) 0(24) 0(16) 0(23) 0(52) 0(54) 0(53)

MSA 0(49) 0(51) 0(44) 0(42) 0(28) 0(22) 0(7) 0(4) 0(8) 0(11) 0(48) 0(49)

Nitrate 0(20) 0(19) 0(2) 0(0) 0(0) 0(0) 0(1) 0(1) 0(1) 0(5) 0(31) 0(21)

Oxalate 0(14) 0(13) 0(5) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(6) 0(20)

Phthalate 0(47) 0(51) 0(38) 0(19) 0(20) 0(31) 0(24) 0(24) 0(23) 0(42) 0(51) 0(44)

Pyruvate 0(48) 0(53) 0(50) 0(50) 0(48) 0(51) 0(51) 0(54) 0(53) 0(52) 0(54) 0(51)

Sodium 0(13) 0(12) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(1) 0(24) 0(19)

Succinate 0(48) 0(50) 0(43) 0(41) 0(38) 0(42) 0(35) 0(35) 0(41) 0(47) 0(52) 0(47)

Sulfate 0(11) 0(8) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(1) 0(9)

TMA & DEA 0(54) 0(54) 0(54) 0(54) 0(54) 0(52) 0(39) 0(32) 0(34) 0(46) 0(53) 0(54)

Table 6.  Summary of the number of data points either missing (outside parenthesis) or below the LOD (inside 
parenthesis) for a given species and MOUDI stage. Note that there were a total of 54 possible data points for 
each species and stage. These counts exclude gravimetric and microscopy sets where chemical analysis was not 
performed. Refer to Table 3 for cutpoint diameters and diameter ranges.
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•	 Catalytic and destructive effects of metals on inorganic (e.g. refs. 51–53) and organic species (e.g. refs. 54–56).
•	 Impacts of extreme events on regional PM by examining (i) sets where holidays occurred (e.g. New Year’s) 

and (ii) sets influenced by typhoons, which have been shown to impact aerosol in the general region, such as 
was shown in previous studies in Taiwan57.

•	 Public health implications related to PM by examining the characteristic size distributions of species posing 
negative effects such as heavy metals and their general prevalence in Metro Manila.

Set # Slope R2 Set # Slope R2

MO1 0.89 0.92 MO31/32 1.19 0.94

MO2 1.42 0.99 MO33 1.26 0.95

MO3/4 1.21 1.00 MO34 1.43 0.98

MO5 1.36 0.99 MO35/36 1.36 1.00

MO6 1.32 0.98 MO37 1.37 0.94

MO7 1.36 0.99 MO38 1.29 0.95

MO8 1.36 1.00 MO39/40 1.50 0.97

MO9 1.26 0.99 MO41 1.50 0.99

MO10 1.35 1.00 MO42 1.46 0.96

MO11 1.26 0.84 MO43/44 1.44 1.00

MO12 1.33 0.99 MO45 1.35 1.00

MO13/14 1.29 1.00 MO46 1.47 1.00

MO15 1.30 0.99 MO47 1.60 0.99

MO16 1.42 0.98 MO48/49 1.70 0.97

MO17 1.39 0.96 MO50 1.94 0.99

MO18 1.33 0.98 MO51 1.43 0.94

MO19 1.47 0.98 MO52/53 1.63 0.94

MO20 1.29 0.95 MO54 1.46 1.00

MO21 1.30 0.97 MO55 1.38 0.98

MO22 1.27 0.97 MO56 1.57 0.94

MO23 1.27 0.94 MO57/58 1.24 0.96

MO24 0.82 1.00 MO59 1.45 1.00

MO26 1.46 0.91 MO60 1.29 0.96

MO27 1.55 1.00 MO61 1.39 0.97

MO28 1.17 0.97 MO62/63 1.24 0.97

MO29 1.50 0.87 MO64 1.36 1.00

MO30 1.66 0.91 MO65/66 1.44 0.99

Table 7.  Slope and coefficient of determination (R2) of the water-soluble charge balance for each MOUDI 
set. Values above 1 indicate there is an anion deficit. Only IC species and K from ICP-QQQ are taken into 
consideration for the charge balance calculations.

Fig. 3  Charge balance plot for the cumulative MOUDI dataset using individual stages of all MOUDI sets. Red 
dots represent every stage of every set, with the exclusion of set 24, which is represented as green squares. The 
blue dashed line represents the line of best fit with a slope of 1.38 ± 0.01 and a R2 value of 0.97, excluding set 24, 
which was associated with New Year’s fireworks containing elevated anions and cationic transition metals.
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